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MONTE CARLO RENORMALIZATION

Rojun Guptat

GROUP: A REVIEW $

Mf3B27tl, Loa Alamcm National I,aboratory
Loa Alamm, N.M. 87545

ABSTFtACT

The logic and the methods of Monte Carlo Renormalization Group (lkfCRG)
are reviewed. A otatun report of mutts for 4-dimenaionai lattice gauge tiwori-
derived using A4CRG is prenented. Existing methods for calculating the improved
action are ieviewed and evaluated. The Gupta-Cordery improved l14CllG method
in described ud compared with the standard one.

The development of Monte Carlo Renormalization group method (MCRG) WQS
csaentially complete in 1979 with the work of Wileonl, Swcnd.zena and Shenker and
Tobochnik*, Prior to thin Ma’ and Kadano~ had provided key ingredients. The
method ia therefore relatively new, furthermore i l!Eapplication to fieid thmries hw-
been carried out only ainc.e 1982, In this short period there haa been (:oneiderabie
activity and I shall review the methodology and curnma.rize the statue wi;h ●mphasis
on 4-di.meneionai gauge theories. There already ●xilts extensive literature (m A4CRG
and I direct the reader to it’’s’e” for detaila and for a wider expmure. Similarly, the
reviewsa’g are ● good starting point for background on Lattice Geuge Theorms and
on tipi.n systems. The topics I shall cover are

1)

2)

3)

4)

5)

6)

7)

and

Lntroduc:ion to IMCRG ad its methodology.

Ranomnali.zation Group Transfcu-mationn fc: d = 4 lattice gauge theories.

U(1) Lattice Gauge theory.

&function and Scaling for SU(3) Lattice Gauge Theory.

Improved Ac.tiono and Method.a to calculate them.

Improved Monte CUIO Renommlizaticm Group.

Effective Field Theoriee.

The main results in QCD from MCRG are the determ”mttion of the ~-function
the con.mquent prediction for the value of the coupling at which mymptotic

scaling -eta in and second UI ~timate of the improved gauge actionl O. Three rwuit~
are not -pectacu!m in the tense of conllrting that QCD is the correct theory of
strong intersct.ioaa, howevc’ they have led to ● deeper understanding of the lattice
theory and provided a quantitative estimate of the approach to the cmtinuum limit.
I shall ●ttempt to show that thi.a method is M yet in itn infancy and should be used
to tackle a number cf problems,

.

$ Invited Talk given at the Nov. 1985 Wuppertal Conference on: L+2.ttice
Gauge Thuwiea - – A Challenge in Larfle Scale Computing.

t J, kderi Oppenheimer Fellow
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Renormalizatior~ Group 11’]2’18 (RG) in a general framewcrk for otudying vc-

1) INTRODUCTION TO J4CRG

term rwar their critical point where s-mgularitiea in thermodynamic functionn arise
from coherence at d] length scales. This phenomenon occurs in Statktical Mechan-
ics near and on the critical surface (defined by a divergent correlation ]ength) and in
the strong i.nteractiona of quarke and Juonn. The JWCRG method wan develope~ to
handle this problem of i.dnitely rnmy coupled degreen 01 f~eedom EO that sensible
reaulta can be obtained from 6nite computers, There are two central ideas behind
MCRG: One in t.n ~Verage over these iIIfiQ!te!v mnnv degreen s! frecdcm in discreetd —-. -a
steps preserving only those which are relevant ior the description of the physical
quantities of interest. The interaction betmn these averaged (block) fields is de
scribed by an i~!inite mt of couplings that get renormalized at each step. In QCD
this discrete reduction ia carried out until the correlation length ia small enough so
that the system can be simulated cm ● lattice with control over finite size ●ffects, The
necond in that th~re are no o“mgultiitiea in the coupling constant space even though
&hecorrelation length diverges on the critical ourface and that the fixed point is short
ranged. Thus even though there me an infinite number of couplings generated under
renormalization, only ● few short range on= w neceasaq to aimul~te the system
at a given ucale and preserve the long distance phyeicn. Prwent rezults suggest that
the 6xecl point for QCD in short ranged.

Standard Monte Carlo: Connider a magnetic nystem connizting of opins {s}
on the eitea of a d – dimensional lattice L dacribed b~ a Hamiltonian H with all

possible co~plings {Ka}. All thermodynamic quantities can be found from a detailed
knowledge of the partition functiol~

where Sa m-e the interactions. Ln Mo]ite CUIO, configurations of oplns on the ori
‘4 heat bath’5, molecular dynamicsinal lattice are generated by the Metropolis ,

al;az Microcanonical]e or the Langcvin17’ls algorithm with a Boltzmann distribu-
tion e-ri s eK”s” . All thermodynamic quantities &re given u simple averagrs of
correl~tion functions over these weighted configurations. T!~e accuracy of the cF&u-
Iations depend on the Jize of the otatlntica! sample and the lattice mize L ueed, Both
these quantities depend on the Iargeat correlation length f in the Byntem, Neu the
critical temperature, TC, associated with second order phase trannitiono, the corr~
lation Icngth and consequently thermodynamic quantitim like the npeci6c heat etc
diverge M functions of (T– TC) with universal rrltlcal cxponento that have been calcu-
lated for mny zysttima either ●nalytically or by the h40ntc+Carlo / JWCRG method,
Because of ● dlverglng f, long rum ● m needed to countar the crlticai nlowlns duwn
and the lat~ice mise haa to maintained at a fow times {. The problem of crltlcal Elow-
ing, down h addrwed by anr~yzing u~’date ●lgorithm (Mctropolh VE, heat bath vn,

Microcmonical vs. Langevin with acceleration techniques like multi-grid ‘e, fouricr
acceleration l“aO etc). The optimum method is, of course, niociel dependent and han
to tkk~ c~re of metastability (local vcrzlln global minima) -lld global excit~tiona Ilk?
vortlcca, Instantons etc th-t ●re not cfllclcntly handled by local ch~ngen. Thim hat

femLure hw not received ●deq~late Rttentlon. To control the oc:ond prohlcm in mtall-
dard Monta CorlO, eff~ts of ~ flnitc lattice auPecinllY an t –~ 00, flnlto SIZC~{alinu
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haa been used with SUCCW. In thin review I zlmll concentmte on JUC)JG. Firzt
I shall G=cribe how universality and -sling are explained by the renormalization
group.

The renu-ma.lization group transformation (JKH’) H’ = R(J9) is an operator
defined on the space of coupling constanta, {Ka}. In practice the RGT k ● pracrip
tion to average spins over E region of size 6 the scale factw of the RGT, to produce
the block spin which interacts with an effective theory If 1. The tw theorien k’ md
H’ dmcribe the mune long distance physics but the correlation length in lattice units
~ + f. If this RGT hu a tied poi~t J9’ such that l?” = R(lf”), then clearly the
thin-y is scale invariant there and ~ ia either Oor cm. An example of a ihed point
with ( =ain T= cm and them tie trivial. The iiitc~ting Cxe is ~ = m +eut
which the theory h governed by a oingle scale ~. Lf th~ fl.xed point in umtable in

1 direction only (this direction ia called the Renormalized Tr@ctov (RT)), then
non-critical H wili flow away from H“ ●long trajectories that asymptotically con-
verge to the RT, Thus the long distance physics of all the trajectories that converge

in identical and k controlled by the RT. Similarly, points c ●way from J7” on the
m– 1 dimension hyperuurface at which ~ = m (the critical mu-face) will conver~e

to H“. The fact that the tied po”mt with its amcwiated RT control the behavior
of all l-l in the neighborhood of H“ is univeaality. Next, consider a noncritical H
that ●ppro~hes 17* along the RT. Thermodynamic ~~uutitiea depend on a sing’e
variable i.e. distance ●long the RT. This b scaling. Corrections to scaling occur
when H does not lie on the RT. These are govemrd by the irrelevant eigenvalues of
the RGT which give the rate of Elow along the critical eurface towardn ~“ ud for
H not on the RT, the rate of convergence towdn it. The rekwwnt eigenva!lle giv=
the rate of flow ●way from the fixed point (along the unst~blo direction RT) and is
related to the critical exponent u. This teme expd en~ with a word of caution;
all tl,eae statements have validity claw to J9”.

In the JWCRG method, configurations are generated with the Boltzmann factor
ex= ‘“ u in standud Monte Carlci, l’j~e RGT, P(a~, a), Is ● prescriptim for ●verag-
ing variableo over a cell of dimension b, The blocked variabhm {al } me defined on
the titea of a oublattice L1 with lattice -pacing b timas that of L. They interact with
undetermined couplings K j, however the configurations ue distributed according to

the correct Boltcmun factor e’ “ i.e.

e-H’(J)
= ~ W’d) e-’’(’) (1,2)

tin expectat Ion valuea cm be calculated as ~impla averagtn. The RGT nhould satisfy
the Kadanoff cc]letralnt

1

(1.3)

independent of the statr (u}. This gllarunt= thmt the ~wo theorm H and H 1 have
the same prrtition function. The blocling Is donr n timua to produce configurations
with hamiltonlann H“ dacllbinp the oarm long distance phymicmbllt on tncreaeingly
coarmr ,atticm. The fixed point M*, the R7( >Id the naquence of thcoriea, H“,
generated from m given mttii.r.g H depend on the RGT. Muy dlflerent R2T cm
be uned to andy~e s given model (determine t}(~ univmaml exponent~) and I defer

.

diocusslon on how to evsluate their efficiency to ~ectio.ls 2 and 5.



4

1.1) Methods to calculate the crltica! exponents.

There are two methods to calcula~e the critical exponents from expectation
values calculated aa simpIe averagcu over configurations. In both there in an i.mp!icit
aasumptior that the sequence H“ st aya cluse to I-1”, The more popular method is due
to Swenckna’7 in which the critical ●xponents are calculated from the eigenvalues
of the linearized transformation matrix T~p which in defined m

~K: a(s:)
= a(s;)aK;-l “

Each of the two terms on the Tight iE a connected 2-point correlation function

:’:),=(s;s;-’)- (s:)(s;-1) .
P

(1.4)

(1.5)

(1.6)

Here (S;) are the expectation vaiuea on the n~~ renormaltied lattice and K; are the
correspox,ding couplings. Th? exponent u is found from the leading eigenvalue At of
T:p m

In b
v

‘m
(1.7)

where b in the scale factor of the RGT. The ●igenvaluea less than one give exp~
nents that control comections to waling. The accuracy of the calculated exponentn
improves if they are evaluated close to the tied point. This can be achie~ed by
otarting from a critical point and blocking the lattice a sufilcient number of times
i.e. for large n. Thus the convergence la limited by the start’ing lattice oize and how
close the starting He i.ato H*. If H“ can be approximated by a small number of
short ra~ge couplings (a necemm.ry amumption in the RG), then this method can be
improved if the renormalized couplings {Kn} are determined starting from a kncnvn
critical HamiltonIan. These should then be ueed in the update. A second pmsibility
is to tune the RCT CIOthat the convergence to H“ from a starting Hc is improl,$’d,
In section 5, I will describe a number of methods to calculate Lhe renormalizc cou-
plings. Tuning of the .RGT la discussed in eection 2.5 and a careful analyom of t+e
accurmcy of this method ia deferred until section 6.

The second method to calculate the leading relevant exponent in due to Wibon”
ConEider oncfi again tbc 2-point conn~ted correlation function (the derivative of ml.

axpectatlon value) (t$~s$) e with j > i. Expand S: In tcrrnof the eigenoperators O:

of the RGT. Clme to H“ the level dependenc~ in O: (equivalently in the expmeiijn
coefhcients c~~) can bc negl~ted, ~hen to th~ leading order
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At. The accuracy of the method improves if j - i in large since non-leading terms
are suppressed geometrically. SC far this method haa not been used extensively so
ih practical accuracy cmnot be evaluated.

QCD: At the trw level, the coupling g in QCD does not renormalize and the
fied point is kt gk,a = 0. At l-loop the kading operator haa eigenvalue equal to one,
ia relevant and the fixed point changes from simple gau.mian to being asymptotically
free and non-trivial. A upecial feature of asymptotic f~om iN that even when the
leading eigenvalue is one there in a flow away from the &ed point ●t s constant
rate, At Zloop, this operator becomes truely relevamt i.e. with eigenvalue > 1.
Perturb&tion theory alno tells ua that !ending =s!ing w:-1-+:--- W: = #r, se the. ,“4,..W,”,M
second eigenvalue should be z ~ fol a RGT with sca;e factor b. Present studiea22b
show that the leading eigenvalue is close to 1 and the saond ne~ f. However,
the statistics are poor and the calculation was done at large gb,a. Thus reliabie
quantitative results are lacking.

1.2: Wilson’s method to flud a crlt!cal point

Consider J4CRG ~imulationa L and S wi~h the same starting couplings Kg but .
on lattice sizes L = bn and S = bn–l. If K: ia critical and after a few blockings
the 2 theariee are close to l?’, then all correlation functions attair their fued point
valuea. For non<riticai starting H, expmd at-wut H“ in the linear approximation

(~$) - (Sin-l’ =a / + {(L:) - (S$-l)j AK;
P

= {(~:~;). - (ST-l$),} AK: (1.9)

to determine AK:. To reduce tinite size effects the compared expectation valuen are
calculated on the Eamc n“izelatticea, The critical coupling ia given by

K: = K: – AK: (1.10)

and this estimate should be improved iteratively.
On the critical surface the 2-point correlation functions (like in Eq, (1.5) and

(1,6)) diverge in the tl,ermodynamic l;rnit. Hmvever, their ratio is the rate of change
of couplings anti these ase well behaved, The reanon MCRG has better cont;~l over
finite size eflecte ia that if H* b short ranged then only short ranged correlation
func!iona need to be evaluated in determining TJP or in Eq. (1.9). The tlnite nizc
contribution to the ratioa fall off like the couplings i.e. exponentially, Th~ reliable
entimatm are obtained from small lattices,

2: Ri2NORMALIZATION GROUF’ TRANSFORMATIONS IN d = 4

It haa been mentioned before th~t there h no unique RGT for n given model.
There are at pmaent four different tranoformationa that have been proposed for
4-dimemional lattice gauge theories. In each of them the block link variable in
constructed from a oum of patha E s ~ putha. This sum of SU(N) nmtricm



.

6

F:gure 1: Wilson’s b = 2 R(JT. Four of the eight pache In a given
direction are ●hewn.

A n‘B+ A - B

“+~ 6 pak

Figure 2a: Svendsen’e b = 2 RnT.

0 . ..lrl .J1._ +4=
A B A Ill A B

Figure 2b: Generalized Cweudsen R(2Twith parmneter~ q that hava
to be opttiized.
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ia not an element of SU(N), and the new block im.k matrix is se]c. Led with Le

distribution

P(ub) = c p ‘r “D . (2.1)

where p b a free panuneter to be optimized. The advantage of taking the sum ia that
such a l?GT preaervea gauge invariance, The ~ RGT are (in chronological order)

2.1) b = 2 by Wilson 1: The geomet~ of the transfonrmtion in ohown in Fig.

1. There are 8 links in a given dir~tion of which 4 are shown in the 3-dimensional
projection. In this method the gauge has to be tied on 15 rites other than the block
site. Th”h fixing haa to take into account the fact that ~he ends of the 8 links are
at different sites. The anaaiz Wiison used wm to trandorm the hypercube loc~,lly
into the Lmdau gauge. The process of fixing the gauge i~ slow and r. disadvzmtage
of the method. ‘rhe need for gauge fi-.!ng can be avoided by defkiilg 8 paths that
run between the block aitea and include the same links, This modified construction
violateo cubic rotational invariance because of the particular choice of the ordering

of the patha within the cell. IrI both forms only # degreea of freedom are urwd
ULthin approbate averaging at each level. This method han not been used skce
Wilson’s preliminary investigation kause the next two methods are simpl~r,

2.L> b = 2 by Swenckn 2]: The transformation in its initial form is shown in

Fig. 2a. The more general version is shown in Fig. 2b where the parameter ~i have
to be detemnined. In this conntructicn all paths start and end at the block sites,
l’hua no gauge fixing ia necewary and arbitrarily complex pathn can be included.
However calculations show that an optimization of the parameters haa to be done
to iuprove the convergence. I shall diacuas thin tuning later.

2.3) b := W by Cordery, Gupta and Novotny22: This transformation
is specific to gauge theories in 4-dimensiono and is baaed on the fact that the body
diagonala of the Apositive $cuben out of a site are orthogonal and of length W. The
geometiy b shown in Fig, 3 and under one RGZ’ the new lattice iE still hypercubic
but rotated with respect to the o] 4 basis. Also, the box boundag becornea jsgqed.
This can be undone by a second application of the RGT with different baaiu vectorB,
So the orig”mal box geometry iE recovered after every scale change by a factor of 3,
The construction of the p~tha requires no gauge fixing, al! pathn ars of equal length
(no free para.nmtcm to be tuned) and ~~ degrees of freedom He uwd at each step,
Further, the block cell consists of the block site and its 8 nerrest neighbors Thin
provides ar. eMy and natural way to include complex mattrr fields and block them
nkuitaneously. It la also better ouitcd to the fermion block diagonwization p] ~cem
of Muttw and Schillinge4 an b explained in section 6.10. In practice, for both SL’(2)
and SU(3), this RCT haa consistently shown good convergence at strong and .lt
weak coupling. It is therefore recommended.

2.4) b = W by Callaway and PetFonz!023: The construction of p~ths
shown In Fig 4a in bam~ on a planer structure i.e. x – ~ and z – t planao am treated
ncparately at ●ll blocking atepa. No gauge fixing u required but only 2 patha are
uocd in the averaging i,~, i,I Eq. (2.’). This drawback of unlng only 2 planar path
can be improved by f:tt ]tidlny nonplanar pa:l.o an ehown in Fig. 4b. Bccaunc thin
RG1’ hae tho ●dvtntage tl~nt b = {~ h the nrnallost scale factor poalble, a m~iom

(cst ohould be mnde.
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Figure 4a: The two paths in tbe
b -n MT.
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Figure 4b: Additional 4 link paths.
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TCP is ●cmewhere near the dotted line DX.



9

2.5) Optimkation of the RCT: In addition to the freedom of the choice of
the FtGT, there are the free parametem p and al. %aenfratz d ~.a’ han ah~n
that the convergence of the original b = 2 Swend.uen trmwformation ia improved if

p ia tuned. I will give a qualitative description of how this works. Consider a oet
of RGT that are a function of the continuous parameter p i.e. ~. Starting from
a given po-int H, the b: wked thmriea generated are decribed by H1 (p). They all
have the owxie bng distance behavior aa cam be ckked by measuring expectation
valuea of large Wikon 100pa. In fact there k nn effective Wilson action H. ~f which
will have the same IOJLg distance behavior. The short dintance behavior of H(p)
will be different and for some VCJU= of p, the (pfag)D will be luger thm the (plnq)w
corresponding to 17cjl. I have checked that this ia the csse for the original Swendsen
trzmsformation when p = cm and Q2 < 1. Lowering p reduces the blocked (#aq)P,

making it agree better with Hcff. Thus, the tuning makes the @hort and long
distance behavior correspond better to the s-e approximate l?,~l. This improves
the ‘.uatching (using umall !oops) in the 2-lattice method to calculate the &function.
Hemenfratz et cal.a’ eatim.ate p using perturbation theory and by Monte Carl{) wing
the criterion of early matching of block expectation valuea b Wilmn’s two lattice
methcd. They found that the bent value at # = 6. given by Monte Carlo (- 35)

do-emnot agree with the vn!ue found using perturbation theory (- 15). So aa of now
this optimization is still by trial, Also, pOPtdepends on the coupling g. This implies
that the RT ce-nnot be pulled close to the Wilson mis globally by thb optimization.
So the usefulness of such optimization is l-imited to the /?-function calculation. The
pararnetem ai can oi.rn.ku Iy be optimized using the same improvement criteriori.

Gupta and Pate122 used p = cm in the W RGT. This ia equivalent to choosing
the matrix LTouch that Tr U ~ is maximized (the 6-functiofi construction), They
find that even with this choice the mm!] block Wilson loops are more dizurdercd
than for an H,lf determined using large loops. Thus lowerin~ p would not help.
The W RCT han shown good convergence propertia and provided reliable results
with P = ~.

The freedom to chome the RGT and further tune the parameter ai and p
leads to the question: What are the criteria by which to decide what is the best
RGT? I will !l.mt add-rem the question -- what ia the effect of cha.ng”mg the RGT

au. Changing the R(7T moves the !ixedon the fixed point and on the RT? Conjecture .
point on the critical surface but only along redundant directions A simple argument
is aE follows: Consider two different RGT, El and R2, and their associated fixed
points H; and Hi. There Me no non-malytic cm-rection.s to aculing at either fixed
points and the associated RI’. If these two points are distinct, then under RI Hi
00WS to Hi. ~omequently therg me no scaling violation along the flow. This is

by definition a redundant direction. This implies that the associated l?T differ by
redund~t operatom.

The presence of redundant operatom do= not effect the phya!co, however it can
obscure reoultn. The redundant eigenvaluen aIs not physical, depend on the RCT,
and can be relevant or irrelevmt. If a relev~t redund~nt operator in present then
the flows will not converge to the H“ or to the RT. Thu.a it b desirable to pick a
RGT for which the redundant elgenvaluea are small. Similarly, the coefficients of
the leading irrelevant operatmn ohould be reciuced. To some extent the irrelevant
baaio v=tora me a {unction of the pcdtion of H“, so it is possible to simultaneously
reduc~ the two coefflciente. Ln QCIJ there in an ●dditional freedom –– all possible
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Wilson loops form u overcomplete set. Therefore, in order to tune the RGT and to
!hd an efficient improved action, it in n-essary to detmmine the operatora that can
be eliminated becaune of the overcompletenem “nd the redundant combinations.

Swendsen 26 has conjectured tn.“ -t, the &ed pointcan be moved any-where cm the

critical surface by tuning the RGT. In p~~.!cu!ar, if the simulation po.mt ia made
II*, then that J2GT in opt-imal. There ia some support for thb in spin uystems, where
by adding ~e,ma to the RGT, one can succemi.vely kill terrna in the renormalized
hami;tonian. There are two things to check here: first whether the coefficient of the
RGT tema fall off like tho couplings, i.e. exponentially, and second whether the long
range untuned couplings contkue to fall off at le~t aa fast aa before. The q-mntity
to optimize is the update complexity (embodied in the RCT or the hamiltcmian)
v~r-ma tha decrease in the coefficient of the leading irrelevant operator. Swendaen2d
found that the eigenvaluea for tke d = 3 Iaing model are ~ignificantly “reproved with
a tuned 10 term RGT. However, he did not compare it with a simulation that used
a 10 term truncated renormalized hamiltonian close to the H* for a simple RGZ’.
There is one additional anomaly in this approach: Tuning the RGT improved the
thermal exponent but the results fo: the magnetic exponent deteriorated in quality.
This in eurprioing b=ause the fied point in at zero odd couplings and these remain
unchrmged in tuning the RGT. The previous conjectures are !n conflict and the
results w ambiguous. Consequently, this oubject is being exploredee further.

The criterion for an optimum RGT is to make the H* and the RT as short
rariged as possible. In critical phenomena, the improvement carI be quantified by
measuring the convergence cf the exponents as a function of the blocking level. In
QCD we are interested in continuum mum-ratios etc. These have so fu been hard
to meaaure so the improvement cannot be judged. The behavior of the RT for QGD
L di~uased at the end of oection 5. ~oi- the moment let me conclude this section t-Jy:
The the qu-tion of how best to opt-imim A4CRG has not been adequately answered
and in under investigation.

3: U(l) LATTICE GAUGE THEORY:

The phaae diagram of the theory defined by the action

(3.1)

where O (q) is the charge 1 (chBrge 2) couplinK is known to have & phase bound-
aq separatirig the confining (strong-coupling) phaae from the spin-wave (QED)

27,28,29phaae . The order of the transition along the boundary DXZ in Fig. 5 is
not known, In pmtic’dar it is not known if the gradually weakening fi.rat order
tranmtion along CD ends in a tricritical point, and if no what ia itn location. Evertz
et a/.2e claim that the location of the TCP in at /7 = 1.Ob.tfJ.04and -j = - 0.11+0.05

on buis of a scaling analysis of the discontinuity in the ●nergy AE. The mechanism
driving the transition are topological excitationo8@181, i.e. clo~ed loo~ g of monopo]es,
whom density in obuerved to change at the tramition 8~Iss. This chnnge in demity

ia cauoed by a growth in &he size of the largest monopole loop which begine to opsm
the bite Iatticaa u.aed in the calculaticmu32’s4. Thus, the Usual difficulty of flnitc

size effects near a TCP in determining the lwation of the TC.P by an extrapolation



of the latent heat AE along the phaae boundary ia here compounded by the pres-
ence of monopole current loops that are clmed due to the lattice penodicitysa~s’.
Thew contribute a fake piece to the Al? w;~ich rnakea the uctrapclation unreliable.
One solution in to calculate and then subtract the contribution of th= bop from
All before making the extrapolation. The more reliable method is JMCRG and in
pti.icular the 2-lattice method dincuased in section 1.2 should be used to locate the
TCP. A word of caution for the LJ(l) model when using this rcethod: There ia a
large shift in the critical coupling aa a function of the !attice sizesz and consequently
in the contribution of the fake mormpole loops. One should therefore use a ntarting
couplinu for which both lattice ob-nulntkm~ are cm the Parne side of the trmrwitin)~.

The present atatua is that in a MCRG calculation done along the Wilson axissz
only one relevant exponent wtM fo~nd using the VZ RGT. Furthermore, the value
of the exponent showed a variation with ~. At ~ = 1.~75, v u 0.32 and this va]ue
changea to v s 0.43 (or even the classical value 0.5) at /l = 1.01. One ~]anation
ia that the TCP lies above the Wilson axis and in simulations along the Wilaor,
ax.b one hut measurea the tricritical exponent and then the critical one. The same

‘6. Therefore the locationconcl~ion k also reached in a recent b = 2 JUCRG study
of the TCP .ia still an open question.

The interest “m this model (goal of MC calculation.s) ia to know if there exists a
6xed point at which a non-trivial field theory can be defined. To settle thi.a important
question requ”ms considerably more work,

4: /3-FUNCTIC)N AND SCALING FOR SU(3)
LATTICE GAUGE THEORY

The non-perturbative /?-function tells us how the lattice rnpacing goes to zero as

gbare -+ 0. s~ce on the lattice all dimensionful qu~tities, like mmes, are measured
in unit.a of the lattice spaci~ a, we need to know how a scales in order to take
the continuum limit. One option ia to use the 2-loop perturbative result provided
it in demonstrated th~t this is valid at value-a of gbara where the calculations are
done. The other in to measure the non-perturbative ~-function. In cue there is only
asymptotic scaling, thin calculation i.a still necessary since it providea the value of

Ubor, at which ouch scaling wt~ in.
There Me two methods for ctdculating the non perturb~tive /3-function directly,

4.1) MCRG uelng Wilson’t 2 latt!ce method 1~3: There are 2 groups whc,
have used thin rne~hod for SU(3); one with b = yfi RGT ‘7 wd the aeconda’ with

al The outline of the method is: Fimt a system of sizeb =. 2 proposed by Swem.1 ,1 ,
L = (b”)a is simulated w’ ~h couplings K: and the expectation values of Wilnon 100pa
me calculated on the original lattice and the n block lattices. A second system of size
S = (b”-l)d ia then simulated with coupllnge K: (chosen judiciou~ly) and again the
expectation valuea are calculated on the r) latticea The expectation valuen from the
two simulatiorw are compared with the ones from the l~ger lattice L blocked one
more time i.e. Lm with Sin-l. Finite size effectn are minimized nince the comparison
!s on approximately the same physical nize Iatticm. The couplings K: are adjusted
(which requires A new simulation) until there iE matching at the Iant, n~h, level.
In practice it h nufficicnt to do two simulations S1 and .ql which bracket L and
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then use interpolation. The tent for convergence of the * theories Lm and Sin-l
in that the expctaticm valuea should match eimuhneoualy at the last few levels.
Thin situation In shown in the coupling constant apace in Fig. 6. At matching, the
correlation length at Kg h larger than at K: by the scale factor b. Thus if the
starting trajxtory ia taken h be the Wilson axin (or any 1 parameter line) then the
value of the /?-function, A/?, for ● scale change b in KA – KB.

Under the assumption that the tied point action iE local, and that at any ecale
a few short range couplings are su!!lic”wntb characterize the action, matching the
expectation valuee of s few small Wilson loops ia sulllcient to guarantee that the
two actions are equal. Raall that there is a one to one correspondence between the
value of the couplings and the expectation values, Also note that kite size effects
in expectation valuea are irrelevant once there iE matching because then the two
theories flow along * common trqj=tory under a RGT and continue to match. Thue
it ia sufliclent to require that matching first take place on latticea which are large
enough to ucommodate the important couplings. Thereafter, the check cm be on
a 14 lattice too! It in the rmge of the coupl”mgs that controls tiite size effects in
li4CRG and not the correlation length and this range falls off exponentially even on
the critical surface. This b why MCRG haa better control over llnite size effects

and b a puwerful method.
For the s“npla plaquette SU(3) action with K} s #, asymptotic scaling ia

de6ned by the >Ioop perturbative ~-function,

The quantity calculated u.sing MCRC is,

A)9=-
i3(6g-2)

~(lna)
ulnb ,

(4.1)

(4.2)

i.e., the discrete /9-function at K~ evaluated for a ocale change b.
The raoults for the b = W calculation*7 are shown in TaMe 1, while theme for

b = 2 w shown24 in Ihble 2. There in clear evidence of a dip at ~- 6.0 which
ia caused by the end point of the ph~e trm.sition line in the fundamental-adjoint
coupling -pace. The ccmclusion of th~e calculations ia that there is no asymptotic
scaling below # = 6,1.

4.2) Loop ratio mmthods’’a’: This method iJ simpler aa it - expectation
valuea of Wilson 100pa calculated in standard Monte Carlo. Thus it can be wed for
gauge thmy with dynamical fermlom while method 4.1 cannot until one laama how
to block fermdons. The rkticm of Wilson 100P that cmcel the pd.meter and corner
terns

R(i, j’, k,l) =
W(k, 1)

W (i, j)
where i+j = k+! .

satisfy an ●pproximate homogeneous mnormali.mtlon group equation

R(2/,2j,3k,21, g.,2L) E R(i, j,k, /,gb, ~) .

(4.3)

(4.4)
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FfENORMAL~EO

~ TRAJECTORY [RT)
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:
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LlhE OF
ACTIONS
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I UVFP
Y

Figure 6: The ●~-olution of actions under tlie ronomalization group
traneformatfon. The two action~ {KA~ ●nd {K~j hava tha

uune long-dietanca behavior ●nd their ltttico correlation
lengthe ● re related by the •c~le trmmfomation factor b.

SU(3)
L ?

v A/l forb=@fmm mat.chingon 2-loop

t

6.0 .337(5) .323(5) ●308(0) .489

6.125 .387(S) .376(5) .351(6) .488
.—

6.25 .421 (4) .424(5) .401(5) .488

6.35 ,431(4) .452(5) .445(9) ,487

6.4: .432(4) .464(6) .42;t12) .487

6.5 .435(4) .464(6) .449( 15) .487

6.75 .430(4) .485(5) .443(9) .483

700 .422(7) .s03(11 ) .488( 20) ,484 ,

.

Table 1: The Val”w of M3 for b m s/3 ●t dlFmt Iuvelb of rnakb.1.ng for difTemt

Vahlm of the anlpJiDp ‘. ‘The matching Kp on (3t/3)4 wcm claterm.lnal by linmr

Intmpdatlon and the mmm am bad cm ● lU 9L Ah frown mw the valwx of

All cn~ding to asymp~tlr ml.iq.



14

Thus using Monte Carlo data for ratim calcv.lated on 2 Iatticea of size 2L and L,
with couplings ga and gb respectively, the ti~ired function A~ for b = 2 can be
calculated. Caveats: Eq. (4.4) b=omea cmect only aa i + cm, othemioe there are
corrections due to lattice artifacts. The quality of reaulto for large i, j“,. . . are limited
by otat;~tics. The reliability of the resultn therefore depends on obtahing the same
A~ fo~ i = 1,2,3,4, .. ...

The contribution of lattice artifncta can be reduced in perturbation theory. For
thin consider Eq. (4.4: for a linear combination of loop raticm with coefficients ai.
Tu determine the ai, use the mcpectationn valuea of loops calculated in perturbation
thmry md require that AL? = O (tree-level), 0,679 (1-loep) . . . . Then go back and
w the monte carlo data ior Wi.laon loops to calculate AB. The drawback of this
approach ia that if two (or more) ratim of different ucale, i = 1 and 4 say, are wed
then the d;llerence in statistical errora ie a problem. Otherwise, ●t weak coupling
each ratio roughly sati.ufien Eq. (4.4) and there h a IW of sensitivity in determining
a,. At strong coupling, perturbation thtxn-y calculation/improvement of Ui breakn
down. So one can, at beat, expect a window where reliable reaultb are obtained
Hmm.fratx et J.a’ claim thin in true for # in the range [6,6,6]. Their results are
in agreement with theh J = 2 A4CRC results u ~hown in Table 2, It haa been
obsmwecl by Cutbrodsg in SU(2) th&t otwbility with respect to loop size in reac!~ed .
slowiy. Therefore, one has ta be cautious of apparent convergence

4.S) 11.es’~lta: It ia hard to compa.m the resultb of the 6 = <i study directly
with the b = 2 onea ietause of the different scale factor of the llG1’. Petcher40 has
carried out the following analysin: he fits the fJ = W data to a smooth function
which had the correct asymptotic value bui!t in, Thin fu]~ction can then be used to
determine the discrete change A~ in the collplingu for any other scale factor b. In
Fig 7 the smooth function found from t!le W data Iaacaled to b = 2 ia compared
with the b = 2 A4CRG data.

~=t we would like to dmck U’the A~ calculated from MC determinations of
different phyaicai obsemablea are identical and agree with the A4CRG calculations,
This comparison t-to two things, fist whether them exlnts scaling (constant mass
ratioe) before (larger g) asymptotic scaling and wcond whether the MC rneaaure-
ments are wliable. The lattice value of a mass ma calculated ●t two values of the
coupling, ~ and ~, givas the A~ for a tcale change ~. Unfortunately the valuea

of couplings cannot be oehcted to give the A~ for ● given comtant ecale ‘.hange,
Thin ●gain introduces the problcm of mcaling dat~ thereby preventing ● definite
etntement on acallng, In Fig. 8 we have only UMJ paim of data points with a mcalc
fRctor close to ~~, At #=6,Ll, the 0++ glueball maao41, ~trlng tenrnion U42 and the

deconflnement tempera~ure T. ‘s Iepraent ~cal- of 2, S and 8 lattice units mapec-
ti~ely, Thus identlcd Ad would be n reasonable t-t of scalLng, Bearing in mind the
problem of mca.ling data, the only aigniflc~nt statement b th~t the behnvior of the
glueball maaa Ladlllemnt,

Th~ on.eet of Mymptotic scalin~ haa alm been checked by plottlng ~ where m
b the decw-iflnement temperature T. and A b the 2-loop perturbatlve ecde, Kuti
et al.’s found that for Nr = 10,12,14 th~ Adio is constant and dlff~rent from
the value ●t N, s 8. From !hls they Jcduce that there b asymptotic oca[lng for
#> 6.15. The only dr~-.,back of thin method in the relimce on A calculated in 2-

Ioops to define Mycnrkodc ucdlng. There could be corrections i.e. (1 -t 0(g2)) term,
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that ue lmge for g ~ 1. Thus them calculation ohould be used aa a guide and the
goal should always be to ●ttain constant maau-ratioe.

To conclude this section; A#CRG calculation have not yielded uIy physical
rerulta co far, but they have provided u.awith a definitive ntatexnent on the ●pproach
to the continuum limit. Thie la non-trivial. The present MC determination of u and
the glueball massem need imprcwement before a definite statement of scaling can be
made. The Iargeat lattice calculation of u by de Forcrand44 show deviationa from
asymptotic scaling i.e. @ = 92 (79) AL at ~ = 6.0 (6.3). Since these calculations

+have already treed the power of a Cray XM -48, it lea& ua to the question whether
“knproved actionn can help. This ia dixuaaed next.

6: I)ETERMTNATION OF THE IMPROVED ACTION.

The ●dvantage of using an improved action in MC simulations in to reduce
the effect of operatora that lead to ucaling violations, In QCD this mea.na that
corrections to rnam-ratioa determined from mnall Iatticea can be reduced, Second,
we want to avoid regions near singukritiea where continuum mam-ratioo are violated.
A known exampl~ la the end point of the phaae structure lri thr fundamental-adjoint
plane. There are, to the best of my knowledge, 11 methods i.n existence to calculate
the renormalized couplings. All, except for them using perturbation theory (and
therefore only valid near g = O where scheme dependence is negligible), are based on
A4CRG. In fzwt, nince the fied point and the Renormalized tr~m;ory i.aa function
of the R(2T, an ~hnproved action ia content-free unlaa the RJT in specified,

1 shall briefly describe the methods, state their advantages u-id dhadv~tages
~d mention r-ulta obtained with them. The generic problem of a) stematic enom

in the estimate of the couplings due to ● truncation in the number of couplings kept
in the analysis will be referred to M “truncation errors”, This In a merious dr~wback
becauae the errorn can be very lmge and +ltere io no way o! estimating them without
a second long simulation. Ln order to comider this truncnte~~ ansmtz to be tha bent
‘fit’, a crlterlon to judge the improvement haa to b~ eatabliahed. This la discussed
●fter a brb; description of the methods. To fix the notation, the pure gauge SU(2)
action is written u

+ Xl ~~{2(7’rCJp)3- TrUp}

whiie the SU(3) ●ction is

(6,1)

5,2)

Here the higher mpr-mtationu hve b~’n constructed from Up, ●11the traceo arr
norrndised ~ UIlltY and the OUrM we over all sit- and po~itive orlcnt-tionm of the
Ioopo.
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r ‘1A/l for SU(3) (164 matched whh 84)

K~ b m 2 Mc~ mc~d

1 3
b-2 l-bql htiO lZCthd

~~

6.0 0.35(2) 0.36(3)

G.3 0.43(3) 0.45(3)

6.6 0.55(9)

Table 2 : The valum of Ai3 for a uale change of b =2. The multi are fmrn

ETT’T’-
2.50 (w) 2.571(05) -0.195(01) 0.043(01)

2.058(06) 4.186(06) 0.038(03)

3.00 (w) 3.69(1)

+“

-oo19@04) 0.040(02)

3.469(4Z> 4.211(12) 0.039(04)

3,?5 (w) 4.12(2) 401W05) 0.025(03)

4.W3(37) 4I.182(10) 0.032(06)

4J~36(~3)

4.010(02)

4.0208(91 5)

-0.019(04)

-0.0314(007)

+.032(03)

4.0374(004)

wl’40(03)

-0.(M02(DI)

43049(02)

-0,0268((.)11)

-0.029(03)

Treble 3. Projdion of the remonnal.id SU(2) ncUon onto the k? t.KAXW1X6, 1
pm for aeveml st.art.hg acticrm For b ntmt.ln~ mctlon, the fImt mw nhowa the

ooupllngs aftar one b = ~3 RGT on stmrtlng latti- of sl.ze 9’ adculatd by Um 2-

lattica method m. The moond mw tiuwa the cnupllngs aftm IWO RGT on start-

ing lattl~ of tie 184 calculated @ng tbe rn.imocan onlcal demon mdlmcl “. The

last mt, KP=J4,35, Is on tbe MK tra&ory Eq. ($6).

,

.
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S.1) SymmA.k Program ‘g: Th”b “~a perturbation thmry method to remove

all O(aa) corrections in physicai obaervablea. At the tree level, at l-100p4e and in
the leading log47 mnslysi.a, the 0(a2) corrections are removed by includ”mg the &link
planar loop with strength

!% = -().05 .
KF

(5.3)

There have been some SU(3) calculation 86 done with thin action, but they are

inconclusive and no statement for an improvement in mam-ratioa can be made.

5.2) Block Spin Renormal!z atlon Group (perturbation theo~): The
first work in th.ia di.r=tion ia by Wil.aonl who wrote down the a.nsatz

5= Ket =

KF
–0,0576 ,

%
–0,0388 , (5.4)

where ~e~ b the tw”~ted 6-link coupling. No calculation of phy~ical obsemablea
haa been done with this action. The group of Iwaimki d d. 48 have made a large

independent effort in thin dircwtion of improvement. They find that near g = O the
~tion after 3 RGT can be approximated by including the ~link planar loop with
strength

0.331% ,, –—
.

(5.5)
KF 3.648 “

They show that for both the Wilson matz, Eq. (6.4), and for this action inatemtona
ar~ stable on the lattice. Pincc this In not true of the ttimple plaquette action,
they regard It M another criterion [or improvement, They have recently calculated

the string tension and the hadron maams in the qumched approximation u.sing the
improved gauge action of Eq. (6.6) and the standard Wilson action for the quark
propagator on ● 12s x 24 lattice at an effective # - 6.9. Their reaulto for mass
ratioa are imprusive, A comparison with an equlvmlent calculation on the Wilson
nxis in Iimlted because ● number of parameter are different. The accuracy of their
results warrants mom attention.

6.3) Migdal-Kadanoff Recursion Tbchn!quc: Thin calculation’e iE limited
to the plaquette In the t’~nda.rnental and higher repreaentatione. The integration
over link- b done by expanding the action In term of the characters and then us-
ing the recuralon formula. In the Improved action, the effect of the oinguh.rity in
the fundamental! d.joint plane Is reduced but the Ieudlng lrrelev~t coupling K6P iY
not included, For SU(2)49, the convergence in the ch~actm expansion wu good,
thr recurulon waa -table on kwping 20 character. The Improved action h domi-
nnted by the spin 1 Imd 3/2 reprmentatlona, and the K-M improved trajocto~ WM
approxlmnted by

~A

F; =
-0,24 . (5,6)

It waa later chown by Bitar ct als” that tne heat Kernal action works very well In the
reruralon tchwne and In f~t IS the solutlon In the perturbatlve IImlt. For u SU(2)

calculation of the @-function along the K-M improved tr~ectcmy ~A ~ –0.24KF,
mnd for w anslyoh of the improved action me Ref, 22b.

~.~b) Phenon.o.nologlcal (Llnm Of Con~tant tltrlng l%nu~ ~n): The cont-
inuum lirnlt h taken ~’ong dlrectlon.a perpendicular to the Ilnes of conutant string
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tension in the negstive fundamental- djoint plene. F&bbiBa et al. have meazu.red the
W ~o~nti~, wtile Samuelus haa rnpearheaded a calculation with acdar quarks The
effective coupling for comparison on the Wilson ads in de9.ned by unirig the large N
reaumm.ation technique ‘s.. Since no d;wct comparison has been made it ia hard k
state if better maaa ratioa are obtained.

s.4) Swendoen’s method84 Udng the Ca.llen representation: The block
expectsticm.z valu~ of Wilcon 100pa are cdculat.ed in two ways. Fimt aa slrnple
averagez over block con5guratiom, and ~ond wing the Callen representations
with a gu~ for the block couplings. horn th~e two atimata, the block ccmpling~
are determined iteratively. The method is faat and easy to implement. It doaa have

undeter-nined truncation error-a. Lang 66 haa u.aed thin method to show, that the
qumtic coupling k$’ in the self-interacting ocalar 6eld thmry renomnlizeo to zero.
Recently Burkittss han used it t.o map the flow of the action under the b = 2 RGT
(s~ticm 2.2) for the U(1 J model. From ● difference in the flown he can utimate
the transition pof.nt on the Wilson W. It would be instructive to axtand the 1,1(])
analysis to A? couplinp, valu- along the phase tranai~ion line and check H there is a
qualitative change at the TCF’.

5.6) Calhway-Petmnzl mWflson67~R0 method of fixed block splrm: This .
method ia uacful for dhcrete spin systems like the Ising model and rnodela in the
same univemslity CIMB,A JWCRC calculation is modi,ied by fixing all the b!ock spinn
except one such that only ● controllable few block int.eractiors are non-zero. The
system in nimulrited with the R(X’ used M an addit ‘onal weight in the Metropolis
algorithm. The ratio of probability of this un!ixed spin being up to it being down i.a
equal to a determined function of a certain number (depending on how many block
interaction ue non-zero) of block couplings. By using different configuration of
fixed block spins a system of lii.ea.r eqlmtions is set up from which the block couplings
are determined, The drawback of this method, even fur the Iming model, in that it ia
hard to set up the block spins no that only ● few (R JO) block interaction are non.zero,
Wiboi~ showed that this can be done if one usen the lattice gaa repr~ntation i.e. O
or 1 for spin vdua. The couplingm in the * 1 repreaencation are then given by an
expansion in the lattice gas couplings. This expmaion haa been shown to converge
rapidly for t!ie d = 2 hing model, Tbr wcond improvement due to Wilson in that
instead of ● MC determination of the ratio of probab;’i~lesr the ●xact result can be
obtained in the tra.nafe’ matrix formali~m. The drawback here is that a Vu 11/780
type machine chl hmdle only up 10 12 spins. However ita non-statistical nature
ma.kea it useful M ● tat.

6.6) Charactcm Expuslon motbod of 131tar80: I will describe thi.a metltod
with ● rwtrictlon to aimpla plaquette actions. The chuacter expanelon for the action
in ~ w EP ~, K,x, (UP) where x, h the chmacter in the r’~ repreae)ita~~on
and H, is the correeponcii.ng coupling, Siudlmly the Iloltznlann factor F’P for ew:h
plaquette p can be expanded in ● character expansion F’P = ~, d,~, x,( UP) w’lere
d, b the diu]ension ●nd f, the co.dficient for r’h representation, The couplings ,Y,
are glvm by

(5.7)

-+
The crucial -tap Is that the r~tlo d J c~n be calcul~ted aE a rstlo of expectation val -h
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Um over block configurations. From thk the BoltzNn f~tor ~p ~d co~equently
K, can be detenn.ined. The metkod ia semitive to the convergence of the character
expanaion i.e. the number of terms in r fi~-~dedto determine Fp ~~urately. After thb
there are no tn.mr~t;on errors ‘n determ”ting X,. The method grows in complexity
if huger loops m b be included in thr analyuia. The first reaultsse for the ai.mple
plaquette action in SiJ(2) are encouraging.

6.7) The Schwl.nger-Dyson Equat!on method of Fshmi et af.m: In thin
method the lattice Schwinger-Dyson equations (equations of motion for exp=tatian
valuen of r point functions) Me used to write down a oet of inhomogeneous linear
equationn for the couplings. The coefficients and the inhomogeneoua term are given
in terms of expectation valuea of n-point functions. In deriving these equatiom the
action has to be truncated to the ouhpace of couplings to be detmm.ined. Thus tlic
method h~ truncation errors. Preliminary results for the 0(3) non-linear u-model
in d = 2 are encouraging.

5.8) 2-Lattice AICRG’ methode1~6: The calculation steps Me the same es
Wiluon’s 2-Lattice method to determine the @-function. The method consists of ex-
panding the block uxrwctatioll value I (with unknown couplings) about !hose from
a simulation with known couplings, Kesping just the line~ tmm in the expansion .
gives the difference between the two acts of couplings. The main advantage iE that
this comes free with the calculation of the $-function. The method haE a statisti-
cal drawback that it requirm two different o“nulations m there ia no possibility of
cancellation of statistical errors. Abe, fm from the RT, only the first rermrmalized
couplings can be determined accurately. Thers exist extemive calculations for both
the SU(2) and the SU(3) models using tile b RGT. The estimate for the improved
action in ● 4-parameter space for SU(2) i.saz

$ KA

KkI =
–otw , ~F = -0.10 , 3 = 0.03

hF

and for SU(3) ias’

4% . _~,~ K. K6

‘m=
--0.12 ,

KF %=
-0.12,

(5.8)

(s.9)

The tmncation erroru me known to tie large and the reliabll ,Ly of the reaulte h
being tested by using the mtimrted ilnproved action in the ‘ palate and repeating
the calculation of the ~-function and the improved m tlon. AISLIthe hadron spectrum
b being crnlculated to teat if better mom-ratios m obtalncd. A detailed comparison
of the resu!ta for the renormallzed action h made with the ndcrocanonlral method
discussed next,

5.9) ?,ilcrocanon!cal (Creutc% Demon) Methodea: This method la very
efflclent if from ● previous lkfCRG calculation exp~tat, ion valuea of n block Wilson
loops ~t each of the 1 block levels m determined. lb determine the corrwpond-
lng couplings ●t the l~h lev~l, s mlcrocanonlc~l sirnulntion la than done (on a name
size lattlce u on which the block axpw tation vnlum were calculated) with the cor-
nmpondlng n cnergl= flxad and with one demon per Inturactlon. The deml:cd n
couplings me then determined from the dbtributi~m Ofdemon enargles. P. StolorxOo
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~,t Caltech ued tLe block expectation.a values obtained after two applications of the

W RGT for SU(2). FYom these he obiatied the cecond, (f = 2), renormalized ac-
tion in a tmncated coupllng constant brWU (four couplings of Eq(5.1)). The reaulta
are shown in Table 3 tind cornpamd with the fl.mt renorrnali~ed couplings obtained
from the %Latt ice AdCRC method described above. The reaulte ohow ● rapid con-
vergence of the action tfi the R1’ consistent witk the -timates given in Equ (S.8).
This ia ●violence that th~ VZ RG?’ trmforrnatlon haa good convergence propeitiea
after two eteps. In this calculation it VP ewy to thermdize the four energies. The
simulation is faater thm the 2-Luttice method and haa better statistical properties.
Also the block couplings at all levels ca be determined once the block expectation
valuea Me known. The truncation er:ora U( .he s-e ae “mthe 2-Lattice method.

5.10) Block Diagonal~zatlon method of Mutter and SchUlLnga4: This
ia at present the only m.athod that attempts to improve both the gauge ~ld the
fermion action. The main idea ie thct quark propugatom are calculated on blacked
gauge configuration using a blocked fermion action. ‘I’he blocked ferm.ion action is
adculated aa follows: Let !,he starting action be the Wilson action

QM* , (&lo)

where Jll is the interaction matrix. l’he lattice k now divided into blocks which for
the W RcT co~tain 9 s!tw each. The site action in then cast into a block action

ErH [s,11)

where S is a 9 cnmponent Ilirac fermian field and 1’ is the interaction mktrix set up to
reproduce Lq. (s.10). The maas term part of I“, I’~, is now diagonalized to provide
the non-interucticn fermion baals vectom. For the W RGT, tho 9 eigenvaluea of
I_’~ are O and 8 degenerate ones with value ~. The light mode alona ia kept on the
blocked Ibttice, The interaction between the light tmd heavy modes is calculated
in perturbation theory and theee tem a-~ added to the Wilson action to give the
improved femion coupllng matrix. It !s to be noted that ~hio fermion diagona.lization
is only approximate. Thu~ lattice mw~ will not ● priori change by the ecale factor
b between the original and the blocked l&ttice. It is therefww neceamry to fist check
how good the transformation in in preaervlng masa-ratim of t!~e unblocked system,
The results on a twice blocked set of ccn!lgurationa udng b = 2 ua encouragingog.
Remlta of ● taut of prcaervation of mw ratioe under blocking ohould be ●vailable
coon for both the b = ? and h =: fi RGT. At thin point it ie wor~h rncntloning
tl~at the following ●dvantagca were obm-ved in the dlagonall:c~.tiun Drorese for the
@ RGT In comparison to b = 2.
(a) The sep~atlon between the light modes m w O and the heav)~ modes b bettc~

i.e. ~ versus ~, m tha perturbativ~ com=tionn u? mme reliable.
(b) Rotational invariance u not broken an LaLn the b = 2 tmn.sfornmtion.
(c) No closed gauge loops which ma.nlfeat themaelvea u additional contact terms in

the fermion operatora arise. Thio Implles that thti value of the Wilson parameter
r doa not get modified and x. would remain the ~Arric on the blocked lattice
for the Wilson farmiona If the exact fermlon couplln~ matrix wu used In the
calculationei

(d) The blocking of gmuge Ilnko la ihe same m defined in mction 2i3.
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Dhcusslon: There are some featuren of the improved action that seem common
to the varioua analyeis done. The details will certainly depend on the specific RGT.
(P.)

(b)

(c)

(d)

‘~’heleading i.rrelwant operator in dominated by Kep, the 6 – link planar Wilson
lcop, Thus a RGT that kills it in an improvement.

From the X RGZ’ ~nalysis, one gets an estimate of R - ~ z -0.12,

Thun near ~ = 6., the phaae structure in the {KF, KA} plane h avoided.
Thin is necessary becaune in the vicinity of the end point of the phase structure
univemality “Mviolated.
The RT for the b = W RCT ~h~~s signi6cut deviationa from linearity in the
region acceaaible to Monte Carlo. The ratios given in Eqs. (5.8) and (5.9) are
M estimate of the asymptotic behavior.
The RT out of the fixed point io local i.e. dominated by small loops. The Wilson
axin is tamgent to the strong coupling RT at the trivial Eixed point at Ka = 0.
The change from the weak coup!ing RT to flow close to the Wilson axis takes

pl~e in the region where current hfontc Carlo calculations have been done i.e. ,
between s.7 and 6.S. Thin feature needs to be investigated since cunent mass-
raticm show a behavior that is ‘in between strong coupling and the expected
continuum one.

1{ L still necmoary k evaluate whether constant maau-ration in the quenched -
approximation are obtained earlier with ar improved action. The results have to
justify the factor of * 5 by which the gauge update slows dawn when the above four
couplings are used, The key lies in improving the fermion sector. For dyntical
quarh, the gauge update Laa small fraction of the update time. So, an ir,veatment
in imrroving the action ia justified.

0: IMPROVED MONTE C 4RL0 RENORMALIZATION GROUP6e

I shall review the Cupta-Cordery Monte Carlo Renorcna!ization Group method
(IAfCRG) in some detail. In this method the Renormalized Haroiltonian and the
Linearized Tranaformatlon Matrix, LTA#, are determined without any truncation
errors. There u no long time correlation even on the critical surface and the block
n-point correlation functions like (SJS~) - (SJ)(S#) are calculable numbers. Also,
the method ●now a cmeful error malys!n in the determination of the renormnlized
couplings and in the LT&i.

L: the IA4CRC method the configuration {u} are generated with the weight

I’(gl, s)e -H(#) +H’(#’) (6.1)

where H~ in a gueoa for H 1. Note that both the site and block spins am used ~xithe

update of the oite epi.rm. In a.rmlogue to Eq. (1.2), the distribution of the block spins
is given by

e- H’(#’)+W (J) =
~P(8’,~)e-H(”)+H’(”) (6.2)

~ JfO = H1, then the block spins are completely uncorrelated and the calculation of
the n-point functions on the block lattice in trivial.

(s’)=0a (s’s))a = nmbop .,. (6.3)
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where for the Ioing model (and mmt other models) the integer na is simply a product
of the number of sites times the multiplicity of interaction type Sa. When E@ # Ifl,
then to fimt order

(s:) = (s:s;)H#=Hl (K’ -

and using Eq. (6.3), the renormalized couplings {R~)
cation errom aa

K: (%).~g+—
no “

K“)p (6.4)

are determined with no tm.m-

(6.5)

This procedure can be iterated -- use 17n-1 M the spin H in Eq. (6.!,) to find
H“. Lf the irrdevmt eigenvahma are mna!l, then after two or three repetitiona of
~he RGT, the oequence H” converges to the fixed, point Hamiltonian Jf” which

ia aasumed to be short ranged. For the d = 2 Icing model, the method has been
shown to be extremely stable ‘7. The only Iimitatiom of this method me the linearity
approx-imation, Eq. (9.4), (this iE trivially handled by iterating Ho) and the use of
a truncated fYm- 1 for the spin Hamiitonian in the update to llnd Hn. The second
limitation can be overcome and the solution h utraightfolward: In Eq, (6.1) use Ho
as the g-was for H“. The update now involves the original spins and all block spins
up to the nth level in the E301tzmann weight .

P(a”, d-’) ...... P(al,8)c-~@)+~’@”) . (6.6)

The four Eqs, (6.2-6.5) are unchanged except that the Icvef ouperscipt in replaced
by n, i.e. the n ‘A levcf block-block correlation matrix is diagonal and given by Eq,
(6.3). With this modification, the H“ i.a calculated directly. The limitation on n in
the size of the starting lattice. Such a check ia neceaaary because errors in long ran~e
couplings due to finite stat”wticn and the efkts of a truncation in the spin H“- 1 get
magnitlied and the uystem rapidly flows away from the 6xed point,

The calculation of the LTkf proc~da exactly ae in the etandn.rd A4c’RG i.e.
Eqs. (1.4) to (1,6), However, in the limit HP = H 1, the block-block correlation
matr”w b di~gonal and given by Eq. (6.3). Thus it hme no truncation errors, CM be
inverted with impunity and tl e final LZ’M elements are also free of all truncation
errors. The only error in in finding the eigenvaluea from a truncated matrix. These -
errors can be estimated and the results improved au explained below.

JAfCRC is therefore more complicated than A4CRG and requirea a simultane-
ous calculation of a many term H(u) and If@(al ) ●t update, However, the system
doen not have critical slowing down. S~ondly, the correlation length f can always be
made of O(1), so hnite size affecto are dominated by the range of interactions, which
by ausurnption of a short range If” fall off exponentially. Thus, critical phenomenon
can be studied on small lattices and with no hidden sweep to uwaep correlation that
invalidate the atati.stical accuracy of the reaultn.

6.1: Z.mncation Errors In The LThf

Comider the matrix ~quatlon for T in block form

(6,7)



24

where D11 ~d U11 are the 2 derivative matrices calculated in some truncated space
of operatom that are comidered dominant. The elements of the sub-matrix T11 will

have no truncation ●rrorn provided W? can calculate

In the IJWCRG method the matrix D is diagonal and known, 00 llla ia O. Thus
elem mta of Tl 1 determined from VI 1 have no truncation errom. The crrom in the
eigenvalues and eigenvectors ~ise solely from diagomdizing 2’11 rather than the r 11
matr’~ T. Calculation in the d = 2 Inin~ model have shown that these errors
are large, i.e. of order 10%, if all operatorn of a given range are not included. An
open problem right now w a robust criterion for claaaifying operators into sets such
that including successive sets decreaaea the truncation errur geometrically by a large
factor.

The em-mu arbing from Ming a eubmatrix Tll can be reduced air ificantly by
diagonalizing

(6.9)

‘o The correction term Tl~*T12Z’21 ia theaa shown by Eihankar, Gupta and Murthy .
2nd order perturbation reoult valid for all eigenvalues that are large coinpar~d to

those of T22. This correction matrix cmi be calculated in XMCRG from (Ta) 11-
(Tl ,)2. I am here u’erlooking the errom due to the RG flew, because of which T2 is
evaluated at a different point than l’. Another napect of these errors ia their behavioi
aa a function of how cloee to liJ’ the calculation b done. For the d = 2 Ining model
weee’ee tid that the truncation errora in the relewmt eigenvaluea are large. Adding
more operatom does not monotonically decrc= the error. The fluctuation can be
m large u 2% even after the 20 largeut operatorn are included in T11.

In stndard AJCRG, the calculation with Tl 1 = D~~U11 have shown good
convergence once few operators, O (5 – 10), are included in 7’11. The retuon for this
is an approximate cancellation of a term ignored and the correction term. Using Eq.
(6.7), ignoring term.~ with Taa and approximating T1~ = D~ll U1l we get

-L7;;’. D12

Further, these derivative rnatricea are roughly proportional, i.e. U - A:D and the
corrections fall off au the ratio of non-leading eigenvaluea to the leading one ~~. This
folbws from the arguments of section 1.1 cmd can be checked by expanding opmctom
in term of eigonopuratora. Thus Swendsen7 by calculating just D~/U11 and ignoring
all truncation problems waa effectively incorporating a large part of the perturbative
correction piece. ‘Ihb explaina hio succees. Shankur70 haa found a corrmtion term to
furthar decrem~ the truncation effecto in M f;RG. However, given the aaaumptions,
the flow under a RG and the ouccean of ttie procedure M it exists, m improvement
may be )mrd to evaluate,

Thuo, at pr=nt the best way to get accurate r~ults is to uae JMcRc to
calculate the Renormalized couplings and Swendsenb JIACRG method to calculate

tbe eigenvalua. The topics that need more work are the accuracy of perturbativc
improvement In IJMCRG, the clauuiflcation of interactions into complete sets and a
quantitative undemanding of the tu.uing of the RGT.

.
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J=
[1]

[2]

[3]

[4]

[5]

the

Let me also summar ize some of the other rcaulta obtained from the otudy of the
2 ls!~,g model.
The LTA4 haa elemeDta that grow along rowr and fall slong Colum.n.ace,therefore
it can be arranged to look like

()AB
CD

(6.10)

with A the minimal truncated n x n block matr”m that shou!d be cak ~lated.
The case c = O ia simple; there are no truncation errom in either method
and diagona.hz”mg A gives the n h.rgat eigenvalueo. Otherwiw for JA4CRG
the truncation emcr dependa on the dot product of terms in c and B. The
requirement of absolute convergence in the dot product only guaren; ~ that
thin product in finite but it may be arbitrarily large i.e. 0(1). Therefore foi
each model, a careful study of the signs and magnitude of the elements in c as
a function of the RGT becomes necewary, This b being done at Comelle”,
The leading left eigemwtor ia normal to the critical aurfaceae. Its elements give
an estimate of the growth in the elements along the rows of the LTM.
Using If” aa the known nearest-neighbor critical point ~~n = 0.44068, the -
lhfCRG resultse7 for H‘ are independent (within statistical accuracy) of finite
size eff~ts for lattice sizes 16, 32, 64 and 128.
The results for Hn converged provided the couplings in Hu were correct to
0(10-3). Thin initial accuracy can be achievcde7 with a few thousand sweeps
on a 1282 lattice.
The statbtical errom in JlkfCRG can be evaluated very reliablye7. Detailed
biting analysis showed that each sweep b approximately independent ud an
accuracy of 10-6 ia obtained in all couplings with - 2 c 106 sweeps on a 642
lattice. Thjg could be achieved with 30CM)VW 11/780 hours.

‘Io conclude, I believe that JA4CRG provides a complete framework to analyze
critical behavior of spin and gauge models. With the increaaed availability of

supercnmputer time we shall have very accurate md reliable results.

7: EFFECTIVE TIELD THEORIES

The point of effective field ~heoriea ia that physical phenomena at some gi~ ~n
length scale can be described by some effect, ive/compmit~ degrees of freedom. The
couplingo between these variables are detwrnincd by the underlying mlcroacop~c the-
ory. Thus we would like to know theee effective degreeu of freedom and the couplirgs.
So far the dlscunaion of J4CRG haa focumed on the change of scale without a change
O( vari~blea. To make full une of its power, a transformation of v~iablee ●t the
appropriate ncale nhould be added i.e. In addition to a RGT that just werages over
degmea of f~dom, consider & change from the microscopic throry to an effective

theory with new ,ar]ablea at ~omc give length CCAIO,These variables can be com-
pmite (M In the case in goil)g from QCD to t theory where the degrees of freedom
are hadro~~) cr repre.wmt a fr~zing aa In I?U(2) ●t high temperature whero the
Interaction between t,:e Wilson IIneu la described by an effective d = 3 Iaing moJel,
Hera one tru~fo~ ~ from link vnr!ahlnm tn Wlln.nn tinm tn i~inm nnlnm
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Once the effective theory haa been constructed, it ia importmt to knmv the
u.rdvemality clam h which it belongu. This would provide a detailed kncdedge of
the critical/long distance behavior. Little work haa been done in actually exploring
urdvemality claasea by mapping flow that incorporate a change of vmiablea.

The way to do this in standard MC in to de!lne the composite degrees of freedom
and their n-point functions in term of the micrmcopic variables. From the expecta-
tion valu- of thw n-point comelation functionn calculated u oimple avera.gee, the
corresponding couplingE can then be determined by a Microcannonical Simulation aa
described in wction 6.9. One ouch calculation in by Ogilvie and Gock.ech70 in which
they determine the neareat neighbor couplings between the Wilson lima in SU(2).

In MCRG, the transformation from the micrmcopic degr= of frdom to the
compmite variablea ia made on the orighml lattice (aarne aa in MC). The RGT in
de5ed on the compodte Variabl- and the critical exponents of the effective theory
are calculated from the LTA4. The couplings can be determined by one or more of
the methods of cection 5. This procem aleo mapo the univemality clam. Similarly,
IA4CRG C= be wed provided R@ is 4 guemed harniltonian for the effective theory,
This subject h being actively pumued In collaboration with A. Pate], C. Umrig~
and K. G. Wilson and we hope jt will blouom.
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